NEWS: Lyme testing symposium at CT State Capitol on Sept. 16

Press release:

Hartford State Capitol to Host First of its Kind Scientific Lyme Disease Symposium

August 04, 2014 10:00 AM Eastern Daylight Time

HARTFORD, Conn.–(BUSINESS WIRE)–The Coalition Against Lyme and Related Borrelioses (CALRB, www.calrb.org) is hosting a symposium on September 16, 2014 at the State Capitol building in Hartford, Conn., to discuss new scientific approaches to Lyme disease testing and diagnosis. The symposium is believed to be the first of its kind devoted strictly to discussing new and evolving DNA sequencing-based testing techniques.

“With the dramatic increase in the numbers of Lyme disease cases in recent years, has come demand for more reliable tests”

“The symposium will feature a diverse group of speakers from the scientific and medical communities coming together for the
first time to discuss new and evolving Lyme disease testing techniques,” said Kevin Moore, president and executive director of CALRB.

Specifically, presenters will be discussing DNA sequencing based testing for Borrelia burgdorferi, Borrelia miyamotoi and other pathogenic borreliae in patient samples for reliable diagnosis of this disease complex, said Moore.

“The symposium is a call to action in response to a recent desire expressed by Dr. Paul Mead, chief of epidemiology and surveillance for the CDC’s Lyme disease program, for more reliable and conclusive Lyme disease tests,” Moore said, adding, “This symposium hopefully gets us one step closer to newer, more effective tests.”

In a recent interview with ABC News, Dr. Mead acknowledged the limitations of the two-tier serology test, long the standard for Lyme disease testing, and said, “We would love to have better tests available, but it’s not as easy as it sounds.”

Dr. Mead has advised the symposium organizers of a conflict in his schedule that will make it impossible for him to attend, Moore said. However, in seeking the CDC’s guidance, he has asked Dr. Mead to consider designating another CDC scientist to attend. “The FDA, Infectious Diseases Society of America and the College of American Pathologists are also invited,” said Moore.

More than 300,000 cases of Lyme disease are diagnosed annually in the United States. The illness is increasing across the nation, reaching almost epidemic proportions in some areas. Lyme disease, or, more accurately, the borrelia bacteria that causes the illness, dates back millions of years. It wasn’t until 1975, however, when several cases turned up in Lyme, Connecticut, that the illness was named. Serology tests for Lyme disease were introduced in the 1980’s, but the two-tier serology test has been the chief testing tool for the
diagnosis of Lyme disease since 1994. At the time, serology tests were considered a significant advancement in diagnostic medical science. However, medical practitioners and scientists readily concede that the tests can be inaccurate and have a high rate of false positives or false negatives resulting in missed diagnosis and improper treatment.

“With the dramatic increase in the numbers of Lyme disease cases in recent years, has come demand for more reliable tests,” Moore said.

Experts from the medical and scientific communities at the symposium will discuss various new and evolving Lyme disease tests utilizing DNA sequencing. These tests are believed by medical scientists to be far more accurate than standard serology tests. They are able to detect the Lyme and related borrelia bacteria, such as Borrelia miyamotoi at earlier stages of infection, unlike the current tests, and take far less time than the blood culture method to complete. Greater test accuracy and a quicker turn-around in test results means timely, appropriate treatment of affected patients and can help to prevent or minimize patient tissue damage resulting from undiagnosed borreliosis or to identify persistent borrelia infections due to poor response to antibiotic treatments.

For more information about the symposium and to register for this event, log on to: http://calrb.org/2014symposium.html

Symposium Agenda:

<table>
<thead>
<tr>
<th>Date:</th>
<th>September 16, 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place:</td>
<td>State Capitol Building</td>
</tr>
<tr>
<td></td>
<td>Legislative Building Annex</td>
</tr>
<tr>
<td></td>
<td>Hartford, Conn.</td>
</tr>
<tr>
<td>Time:</td>
<td>9:00 a.m. to 4:00 p.m.</td>
</tr>
</tbody>
</table>
8:00 a.m. registration and light breakfast fare – coffee, muffins

12:00 noon lunch break

12:00 noon PRESS CONFERENCE (media and key presenters only)

Afternoon session: 1:15 p.m. – 4:00 p.m.

Agenda Topics:

9:30 AM – 11:00 AM
16S rDNA sequencing testing for spirochetemia in clinical practice
Sin Hang Lee, MD, Thomas Moorcroft, DO and Katherine Lantsman, MD

11:00 AM – 11:30 AM
Relapsing fever borreliosis and the MSIDS model
Richard Horowitz, MD

11:30 AM- 12:00 Noon
The need of testing for Lyme disease causative agents in clinical practice
Daniel J. Cameron, MD, President, ILADS

12:00 Noon Lunch Break
PRESS CONFERENCE (media and key presenters only)

1:30 PM- 2:00 PM
Philip Molloy, MD, Medical Director, IMUGEN, Inc. (pending confirmation)

Confirmed speakers:
Sin Hang Lee, MD, Pathologist, Milford Hospital, Milford, CT
Thomas Moorcroft, DO, Berlin, CT
Katherine Lantsman, MD, Boston, MA
Richard Horowitz, MD, Hyde Park, NY
Daniel J. Cameron, MD, President, International Lyme and Associated Diseases Society
Invited speakers:
Paul Mead, MD, Chief of Epidemiology and Surveillance, Centers for Disease Control and Prevention
Philip Molloy, MD, Medical Director, IMUGEN, Inc. Norwood, MA
Sally Hojvat, PhD, FDA
Gene N. Herbek, MD, President, College of American Pathologists
Barbara E. Murray, MD, President, Infectious Diseases Society of America
Jewel Mullen, MD, Commissioner, Connecticut Department of Public Health

CALRB is a newly formed Connecticut non-profit organization dedicated to informing the public, medical, scientific and political communities about developments in the fight against Lyme disease, specifically pertaining to the reliable diagnosis of Lyme disease and Lyme disease-mimicking borrelia infections.